MI/RR Space Charge Simulations with Synergia

James Amundson Panagiotis Spentzouris Eric Stern
Computational Physics for Accelerators Group

Fermilab

Project X Collaboration Meeting

Outline

- Synergia
- Single-particle Optics (CHEF)
- Multiparticle/Collective Effects
 - Space Charge
 - Resistive Wall
 - Multibunch
 - Additions for Project X
- Synergia Application examples
 - Booster
 - Mu2e
- MI Simulation plans

Overview

- Fully 3D PIC code
- Space charge included via split-operator technique
- Single-particle physics from CHEF
- Runs on desktops, clusters and supercomputers
- Fully dynamic simulations including ramping, feedback, etc.

- ComPASS collaboration includes most major accelerator simulation packages in the U.S., including all national labs
- Emphasis is on massively parallel computing

CHEF

Collaborative Hierarchical Expandable Framework

- CHEF originally developed at Fermilab by Leo Michelotti starting in the early 90's
- Single-particle optics with full dynamics
 - Can be reduced to arbitrary-order maps
 - We have done demonstration calculations in Synergia to 15th order
- Customizable propagators
- MAD input
 - Internal representation not limited by MAD parameters

Space Charge and Resistive Wall Impedance

Space Charge

- Fully 3D space charge
 - Various boundary conditions: open, longitudinally periodic, conducting pipes
 - Utilizes (requires) large parallel computing resources
 - Extensively benchmarked against other codes
- 2D space charge
 - Useful in some limits, very fast

Resistive Wall Impedance

- Both intra-bunch and inter-bunch effects available
- Dipole and quadrupole effects implemented
- Benchmarked against theoretical values in various limits

Multibunch Physics

Multibunch Physics

- Synergia can model multiple interacting bunches
- Strongly-coupled bunches
 - Space charge calculations include all bunches on a single grid
 - Scales to a few bunches
 - Example: 400 MHz bunch merging in the Fermilab Booster
- Weakly-coupled bunches
 - Bunches only communicate through resistive wall effects
 - Scales to many bunches

Additions for Project X

Complex apertures

- Currently a single aperture is defined for the entire machine
 - We will add the ability to specify apertures on an element-by-element basis
- Only circular apertures are currently implemented
 - We will add other shapes as necessary

Booster Applications

We have done extensive modeling of the Booster with Synergia

- 400 MHz structure debunching
- 37.7 MHz capture
 - Including RF phase ramping
- Emittance growth
 - Including comparison with experiment
- Halo formation
 - Including comparison with experiment

Mu2e

We are currently working on space charge simulations of the Fermilab Debuncher for the proposed Mu2e experiment

- Beam to be extracted from Debuncher using resonant extraction
- Accumulator/Debuncher required to handle 10⁵ times more particles than current operating conditions

Beam parameters from proposal

- 8 GeV
- 1.2×10^{13} protons/bunch
 - lower intensity bunches under consideration
- 20π emittance
- 40 nsec longitudinal RMS
- ullet (Laslett) space charge tune shift is ~ 0.08

Mu2e Sextupole Ramping without Space Charge

Mu2e Space Charge without Sextupole Ramping

Bare tune: 0.63 horizontal, 0.75 vertical (Point 1) Tune footprint:

- Two-dimensional densities (colors) are plotted on a logarithmic scale
- One-dimensional densities are plotted on a linear scale
- Bin sizes are one unit of tune resolution

Mu2e Sextupoles and Space Charge Combined

white 3rd-order orange 4th-order green 5th-order

black 6th-order red 7th-order cyan 8th-order

Mu2e loss analysis

We have studies aggregate losses in tune scans

We can also perform detailed studies of individual losses

Mu2e Parameter Scan Summary

MI Simulation plans. Available information:

- MI MAD lattice which we can proces with CHEF and Synergia
- MI loss simulation using STRUCT from A. Drozhdin
 - Converter program to import MAD8 format lattice and add apertures for individual elements and beampipes
 - Fortran code implementing apertures
 - Code that implements particle transport through magnets including hardcoded multipole elements with errors
- Access to aperture, alignment, and field measurement data

Plan for Synergia MI simulations

- Synergia and CHEF use MAD8 input for the lattice description
- High order multipoles and errors for the magnets will be modeled by adding appropriate multipoles to base values read from the lattice description.
 - Discuss with B. Brown and A. Drozhdin on using more accurate description of individual magnets.
- Individual apertures for different elements will need to be added to Synergia. This is straightforward.
- Model validation: perform comparizons with STRUCT (apertures) and IMPACT (space-charge)
- Model space-charge effects for a single bunch at injection
 - Study emittance dilution and losses
- If desirable, extend simulations to include multi-bunch effects

16 /